3.283 \(\int \frac {\cos (c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=116 \[ -\frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {b \cos (c+d x)}} \]

[Out]

2*A*sin(d*x+c)/b^2/d/(b*cos(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/
2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b^2/d/(b*cos(d*x+c))^(1/2)-2*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2
*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^3/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {16, 3021, 2748, 2642, 2641, 2640, 2639} \[ -\frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(A - C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^3*d*Sqrt[Cos[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2])/(b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*A*Sin[c + d*x])/(b^2*d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx &=\frac {\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx}{b}\\ &=\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 \int \frac {\frac {b^2 B}{2}-\frac {1}{2} b^2 (A-C) \cos (c+d x)}{\sqrt {b \cos (c+d x)}} \, dx}{b^4}\\ &=\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {B \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx}{b^2}-\frac {(A-C) \int \sqrt {b \cos (c+d x)} \, dx}{b^3}\\ &=\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2 \sqrt {b \cos (c+d x)}}-\frac {\left ((A-C) \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b^3 \sqrt {\cos (c+d x)}}\\ &=-\frac {2 (A-C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.23, size = 807, normalized size = 6.96 \[ \frac {\frac {(B+C \cos (c+d x)+A \sec (c+d x)) \left (\frac {4 A \sec (c) \sec (c+d x) \sin (d x)}{d}-\frac {2 (-2 A+C+C \cos (2 c)) \csc (c) \sec (c)}{d}\right ) \cos ^2(c+d x)}{\sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))}+\frac {2 A \csc (c) (B+C \cos (c+d x)+A \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right ) \sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt {1-\cos \left (d x+\tan ^{-1}(\tan (c))\right )} \sqrt {\cos \left (d x+\tan ^{-1}(\tan (c))\right )+1} \sqrt {\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1}} \sqrt {\tan ^2(c)+1}}-\frac {\frac {2 \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1} \cos ^2(c)}{\cos ^2(c)+\sin ^2(c)}+\frac {\sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt {\tan ^2(c)+1}}}{\sqrt {\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1}}}\right ) \cos ^{\frac {3}{2}}(c+d x)}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))}-\frac {2 C \csc (c) (B+C \cos (c+d x)+A \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right ) \sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt {1-\cos \left (d x+\tan ^{-1}(\tan (c))\right )} \sqrt {\cos \left (d x+\tan ^{-1}(\tan (c))\right )+1} \sqrt {\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1}} \sqrt {\tan ^2(c)+1}}-\frac {\frac {2 \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1} \cos ^2(c)}{\cos ^2(c)+\sin ^2(c)}+\frac {\sin \left (d x+\tan ^{-1}(\tan (c))\right ) \tan (c)}{\sqrt {\tan ^2(c)+1}}}{\sqrt {\cos (c) \cos \left (d x+\tan ^{-1}(\tan (c))\right ) \sqrt {\tan ^2(c)+1}}}\right ) \cos ^{\frac {3}{2}}(c+d x)}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))}-\frac {4 B \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right ) (B+C \cos (c+d x)+A \sec (c+d x)) \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {-\sqrt {\cot ^2(c)+1} \sin (c) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \cos ^{\frac {3}{2}}(c+d x)}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x)) \sqrt {\cot ^2(c)+1}}}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

((Cos[c + d*x]^2*(B + C*Cos[c + d*x] + A*Sec[c + d*x])*((-2*(-2*A + C + C*Cos[2*c])*Csc[c]*Sec[c])/d + (4*A*Se
c[c]*Sec[c + d*x]*Sin[d*x])/d))/(Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])) - (4*
B*Cos[c + d*x]^(3/2)*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(B + C*Cos[c + d
*x] + A*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*
Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B
*Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) + (2*A*Cos[c + d*x]^(3/2)*Csc[c]*(B + C*Cos[c + d*x] +
 A*Sec[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]
]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcT
an[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] +
 (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan
[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])) - (
2*C*Cos[c + d*x]^(3/2)*Csc[c]*(B + C*Cos[c + d*x] + A*Sec[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, C
os[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Co
s[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin
[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/
(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*Sqrt[b*Cos[c + d*x]]*(2*
A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])))/b^2

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )}}{b^{3} \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))/(b^3*cos(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 1.79, size = 261, normalized size = 2.25 \[ -\frac {2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}\, \left (A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{2} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x)

[Out]

-2/b^2*(-2*sin(1/2*d*x+1/2*c)^4*b+sin(1/2*d*x+1/2*c)^2*b)^(1/2)*(A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+B*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-C*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c
)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________